Recombinant Arabidopsis SQD1 converts udp-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro.

نویسندگان

  • S Sanda
  • T Leustek
  • M J Theisen
  • R M Garavito
  • C Benning
چکیده

The sulfolipid sulfoquinovosyldiacylglycerol is a component of plant photosynthetic membranes and represents one of the few naturally occurring sulfonic acids with detergent properties. Sulfolipid biosynthesis involves the transfer of sulfoquinovose, a 6-deoxy-6-sulfoglucose, from UDP-sulfoquinovose to diacylglycerol. The formation of the sulfonic acid precursor, UDP-sulfoquinovose, from UDP-glucose and a sulfur donor is proposed to be catalyzed by the bacterial SQDB proteins or the orthologous plant SQD1 proteins. To investigate the underlying enzymatic mechanism and to elucidate the de novo synthesis of sulfonic acids in biological systems, we developed an in vitro assay for the recombinant SQD1 protein from Arabidopsis thaliana. Among different possible sulfur donors tested, sulfite led to the formation of UDP-sulfoquinovose in the presence of UDP-glucose and SQD1. An SQD1 T145A mutant showed greatly reduced activity. The UDP-sulfoquinovose formed in this assay was identified by co-chromatography with standards and served as substrate for the sulfolipid synthase associated with spinach chloroplast membranes. Approximate K(m) values of 150 microm for UDP-glucose and 10 microm for sulfite were established for SQD1. Based on our results, we propose that SQD1 catalyzes the formation of UDP-sulfoquinovose from UDP-glucose and sulfite, derived from the sulfate reduction pathway in the chloroplast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis.

Sulfolipids of photosynthetic bacteria and plants are characterized by their unique sulfoquinovose headgroup, a derivative of glucose in which the 6-hydroxyl group is replaced by a sulfonate group. These sulfolipids have been discussed as promising anti-tumor and anti-HIV therapeutics based on their inhibition of DNA polymerase and reverse transcriptase. To study sulfolipid biosynthesis, in par...

متن کامل

Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth.

The sulfolipid sulfoquinovosyldiacylglycerol is one of the three nonphosphorous glycolipids that provide the bulk of the structural lipids in photosynthetic membranes of seed plants. Unlike the galactolipids, sulfolipid is anionic at physiological pH because of its 6-deoxy-6-sulfonate-glucose (sulfoquinovose) head group. The biosynthesis of this lipid proceeds in two steps: first, the assembly ...

متن کامل

A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis.

Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correla...

متن کامل

Identification of a gene for UDP-sulfoquinovose synthase of a green alga, Chlamydomonas reinhardtii, and its phylogeny.

Sulfoquinovosyl diacylglycerol is responsible for the structural and functional integrity of the photosystem II complex of a green alga, Chlamydomonas reinhardtii. We cloned a cDNA of C. reinhardtii containing an open reading frame for a protein 36-64% identical in the primary structure to known UDP-sulfoquinovose synthases, which are required for SQDG synthesis, in other organisms. Through the...

متن کامل

Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana.

Photosynthetic membranes of higher plants contain specific nonphosphorous lipids like the sulfolipid sulfoquinovosyl diacylglycerol in addition to the ubiquitous phospholipid phosphatidylglycerol. In bacteria, an environmental factor that drastically affects thylakoid lipid composition appears to be the availability of phosphate. Accordingly, we discovered an increase in the relative amount of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 6  شماره 

صفحات  -

تاریخ انتشار 2001